Муниципальное казенное общеобразовательное учреждение «Лодейнопольская средняя общеобразовательная школа №68»

РАБОЧАЯ ПРОГРАММА

ПО ФИЗИКЕ

(наименование учебного предмета \ курса)

10-11 классы

(ступень образования \ класс)

2020 – 2023 учебные годы

(срок реализации программы)

Ступень обучения (класс)	среднее общее образование (10-11 классы)
Vo vyvostno voson	в 10 классе – 68 часов
Количество часов	в 10 классе – 00 часов
	в 11 классе – 68 часов
	0.12.13.11.000
Уровень	базовый

Составлена на основе: ФГОС СОО

Учитель <u>Кодлубай Олеся Евгеньевна</u> (Ф.И.О. учителя, составившего рабочую учебную программу)

г. Лодейное Поле 2020 год

1. Пояснительная записка

Рабочая программа составлена на основе:

- Федерального государственного образовательного стандарта среднего общего образования ($\Phi\Gamma OC\ COO$)
- Примерной программы по учебным предметам. Физика, 10 11 классы, автор: А.В. Шаталин к линии УМК Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Соцкий, рекомендованной Министерством образования и науки Российской Федерации.
- Требований к результатам освоения основной образовательной программы среднего общего образования (ООП СОО), представленных в Федеральном государственном образовательном стандарте (ФГОС) среднего общего образования;

В программе учтены основные идеи и положения программы формирования и развития универсальных учебных действий для среднего общего образования и соблюдена преемственность с Примерной программой по физике для основного общего образования.

Программой предусмотрено развитие всех основных видов деятельности, представленных в программе основного общего образования.

Освоение программы по физике обеспечивает овладение основами учебно-исследовательской деятельности, научными методами решения различных теоретических и практических задач.

Методологической основой ФГОС СОО является системно-деятельностный подход. Основные виды учебной деятельности, представленные в тематическом планировании рабочей программы, позволяют строить процесс обучения на основе данного подхода. В результате компетенции, сформированные в школе при изучении физики, могут впоследствии использоваться учащимися в любых жизненных ситуациях.

ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА

Физика, как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Школьный курс физики системообразующий для естественно-научных учебных предметов, поскольку физические законы лежат в основе содержания химии, биологии, физической географии и астрономии.

Изучение физики является необходимым не только для овладения основами одной из естественных наук, являющейся компонентой общего образования. Знание физики в её историческом развитии помогает человеку понять процесс формирования других составляющих современной культуры. Гуманитарное значение физики как обязательной части общего образования состоит в том, что она способствует становлению миропонимания и развитию научного способа мышления, позволяющего объективно оценивать сведения об окружающем мире. Кроме того, овладение основными физическими знаниями на базовом уровне необходимо практически каждому человеку в современной жизни.

Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не столько передаче суммы готовых знаний, сколько знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению.

Цели изучения физики в средней школе:

Формирование у обучающихся уверенности в ценности образования, значимости физических знаний для каждого человека независимо от его профессиональной деятельности;

Овладение основополагающими физическими закономерностями, законами и теориями; расширение объёма используемых физических понятий, терминологии и символики;

Приобретение знаний о фундаментальных физических законах, лежащих в основе современной физической картины мира, о наиболее важных открытиях в области физики, оказавших определяющее влияние на развитие техники и технологии; понимание физической сущности явлений, наблюдаемых во Вселенной:

Овладение основными методами научного познания природы, используемыми в физике (наблюдение, описание, измерение, выдвижение гипотез, проведение эксперимента); овладение умениями обрабатывать данные эксперимента, объяснять полученные результаты, устанавливать зависимости между физическими величинами в наблюдаемом явлении, делать выводы;

Отработка умения решать физические задачи разных уровней сложности;

Приобретение: опыта разнообразной деятельности, опыта познания и самопознания; умений ставить задачи, решать проблемы, принимать решения, искать, анализировать и обрабатывать информацию; ключевых навыков (ключевых компетенций), имеющих универсальное значение: коммуникации, сотрудничества, измерений, эффективного и безопасного использования различных технических устройств;

Освоение способов использования физических знаний для решения практических задач, объяснения явлений окружающей действительности, обеспечения безопасности жизни и охраны природы;

Развитие познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний с использованием различных источников информации и современных информационных технологий; умений формулировать и обосновывать собственную позицию по отношению к физической информации, получаемой из разных источников;

Воспитание уважительного отношения к учёным и их открытиям, чувства гордости за российскую физическую науку.

Особенность целеполагания для базового уровня состоит в том, что обучение ориентировано в основном на формирование у обучающихся общей культуры и научного мировоззрения, на использование полученных знаний и умений в повседневной жизни.

Содержание курса физики в программе среднего общего образования структурируется на основе физических теорий и включает следующие разделы: научный метод познания природы, механика, молекулярная физика и термодинамика, электродинамика, колебания и волны, оптика, специальная теория относительности, квантовая физика, строение Вселенной.

МЕСТО КУРСА ФИЗИКИ В УЧЕБНОМ ПЛАНЕ

В соответствии с учебным планом курсу физики средней школы предшествует курс физики основной школы (7-9 классы), включающий элементарные сведения о физических величинах и явлениях.

На этапе средней школы возможно изучение обучающимися естествознания либо физики на базовом или углублённом уровне.

Данная рабочая программа по физике для базового уровня составлена из расчёта 136ч за два года обучения (по 2 ч в неделю в 10 и 11 классах)

.

2. Планируемые результаты освоения учебного предмета

Личностными результатами обучения физике в основой школе являются:

- умение управлять своей познавательной деятельностью;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- умение сотрудничать со взрослым, сверстниками, детьми младшего возраста в образовательной, учебно-исследовательской, проектной и других видах деятельности;
- сформированность мировоззрения, соответствующего современному уровню развития науки; осознание значимости науки, владения достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки; заинтересованность в научных знаниях об устройстве мира и общества; готовность к научно-техническому творчеству;
 - чувство гордости за российскую физическую науку, гуманизм;
 - положительное отношение к труду, целеустремлённость;
- экологическая культура, бережное отношение к родной земле, природным богатствам России и мира, понимание ответственности за состояние природных ресурсов и разумное природопользование.

Метапредметными результатами освоения выпускниками средней школы программы по физике являются:

- 1) освоение регулятивных универсальных учебных действий:
- самостоятельно определять цели, ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной ранее цели;
 - сопоставлять имеющиеся возможности и необходимые для достижения цели ресурсы;
 - определять несколько путей достижения поставленной цели;
 - задавать параметры и критерии, по которым можно определить, что цель достигнута;
 - сопоставлять полученный результат деятельности с поставленной заранее целью;
- осознавать последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей;
 - 2) освоение познавательных универсальных учебных действий:
 - критически оценивать и интерпретировать информацию с разных позиций;
 - распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления выявленных в информационных источниках противоречий;
- осуществлять развёрнутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
 - искать и находить обобщённые способы решения задач;
- приводить критические аргументы как в отношении собственного суждения, так и в отношении действий и суждений другого человека;
 - анализировать и преобразовывать проблемно-противоречивые ситуации;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможности широкого переноса средств и способов действия;
- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограниче- ния;
- занимать разные позиции в познавательной деятельности (быть учеником и учителем; формулировать образовательный запрос и выполнять консультативные функции самостоятельно; ставить проблему и работать над её решением; управлять совместной познавательной деятельностью и подчиняться);
 - 3) освоение коммуникативных универсальных учебных действий:

- осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за её пределами);
- при осуществлении групповой работы быть как руководителем, так и членом проектной команды в разных ролях (генератором идей, критиком, исполнителем, презентующим и т. д.);
- развёрнуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;
 - распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы;
- согласовывать позиции членов команды в процессе работы над общим продуктом/решением;
- представлять публично результаты индивидуальной и групповой деятельности как перед знакомой, так и перед незнакомой аудиторией;
- подбирать партнёров для деловой коммуникации, исходя из соображений результативности взаимодействия, а не личных симпатий;
 - воспринимать критические замечания как ресурс собственного развития;
- точно и ёмко формулировать как критические, так и одобрительные замечания в адрес других людей в рамках деловой и образовательной коммуникации, избегая при этом личностных оценочных суждений.

Предметными результатами освоения выпускниками средней школы программы по физике на базовом уровне являются:

- сформированность представлений о закономерной связи и познаваемости явлений природы, об объективности научного знания, о роли и месте физики в современной научной картине мира; понимание роли физики в формировании кругозора и функциональной грамотности человека для решения практических задач;
- владение основополагающими физическими понятиями, закономерностями, законами и теориями; уверенное пользование физической терминологией и символикой;
- сформированность представлений о физической сущности явлений природы (механических, тепловых, электромагнитных и квантовых), видах материи (вещество и поле), движении как способе существования материи; усвоение основных идей механики, атомно-молекулярного учения о строении вещества, элементов электродинамики и квантовой физики; овладение понятийным аппаратом и символическим языком физики;
- владение основными методами научного познания, используемыми в физике: наблюдение, описание, измерение, эксперимент; владение умениями обрабатывать результаты измерений, обнаруживать зависимость между физическими величинами, объяснять полученные результаты и делать выводы;
- владение умениями выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов, проверять их экспериментальными средствами, формулируя цель исследования; владение умениями описывать и объяснять самостоятельно проведённые эксперименты, анализировать результаты полученной из экспериментов информации, определять достоверность полученного результата;
 - умение решать простые физические задачи;
- сформированность умения применять полученные знания для объяснения условий протекания физических явлений в природе и для принятия практических решений в повседневной жизни;
- понимание физических основ и принципов действия (работы) машин и механизмов, средств передвижения и связи, бытовых приборов, промышленных технологических процессов, влияния их на окружающую среду; осознание возможных причин техногенных и экологических катастроф;
- сформированность собственной позиции по отношению к физической информации, получаемой из разных источников.

Предметные результаты освоения выпускниками средней школы программы по физике <u>на углублённом уровне</u> должны включать требования к результатам освоения базового курса и дополнительно отражать:

- сформированность системы знаний об общих физических закономерностях, законах и теориях и представлений о действии во Вселенной физических законов, открытых в земных условиях;
- отработанность умения исследовать и анализировать разнообразные физические явления и свойства объектов, объяснять геофизи- ческие явления и принципы работы и характеристики приборов и устройств;
 - умение решать сложные задачи;
- владение умениями выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов, проверять их экспериментальными средствами, формулируя цель исследования;
- владение методами самостоятельного планирования и проведе- ния физических экспериментов, описания и анализа полученной измерительной информации, определения достоверности полученного резуль- тата;
- сформированность умений прогнозировать, анализировать и оценивать последствия бытовой и производственной деятельности человека, связанной с физическими процессами, с позиций экологической безопасности.

В результате изучения учебного предмета «Физика» на уровне среднего общего образования: Выпускник на базовом уровне научится:

- демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей:
- демонстрировать на примерах взаимосвязь между физикой и другими естественными науками;
- устанавливать взаимосвязь естественно-научных явлений и применять основные физические модели для их описания и объяснения;
- использовать информацию физического содержания при решении учебных, практических, проектных и исследовательских задач, интегрируя информацию из различных источников и критически ее оценивая;
- различать и уметь использовать в учебно-исследовательской деятельности методы научного познания (наблюдение, описание, измерение, эксперимент, выдвижение гипотезы, моделирование и др.) и формы научного познания (факты, законы, теории), демонстрируя на примерах их роль и место в научном познании;
- проводить прямые и косвенные изменения физических величин, выбирая измерительные приборы с учетом необходимой точности измерений, планировать ход измерений, получать значение измеряемой величины и оценивать относительную погрешность по заданным формулам;
- проводить исследования зависимостей между физическими величинами: проводить измерения и определять на основе исследования значение параметров, характеризующих данную зависимость между величинами, и делать вывод с учетом погрешности измерений;
- использовать для описания характера протекания физических процессов физические величины и демонстрировать взаимосвязь между ними;
- использовать для описания характера протекания физических процессов физические законы с учетом границ их применимости;
- решать качественные задачи (в том числе и межпредметного характера): используя модели, физические величины и законы, выстраивать логически верную цепочку объяснения (доказательства) предложенного в задаче процесса (явления);
- решать расчетные задачи с явно заданной физической моделью: на основе анализа условия задачи выделять физическую модель, находить физические величины и законы, необходимые и достаточные для ее решения, проводить расчеты и проверять полученный результат;
- учитывать границы применения изученных физических моделей при решении физических и межпредметных задач;

- использовать информацию и применять знания о принципах работы и основных характеристиках изученных машин, приборов и других технических устройств для решения практических, учебно-исследовательских и проектных задач;
- использовать знания о физических объектах и процессах в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде, для принятия решений в повседневной жизни.

Выпускник на базовом уровне получит возможность научиться:

- понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;
- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- характеризовать системную связь между основополагающими научными понятиями:
 пространство, время, материя (вещество, поле), движение, сила, энергия;
- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
- самостоятельно планировать и проводить физические эксперименты;
- характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические, и роль физики в решении этих проблем;
- решать практико-ориентированные качественные и расчетные физические задачи с выбором физической модели, используя несколько физических законов или формул, связывающих известные физические величины, в контексте межпредметных связей;
- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;
- объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки.

3. Содержание учебного предмета

Физика и естественно-научный метод познания природы

Физика – фундаментальная наука о природе. Методы научного исследования физических явлений. Моделирование физических явлений и процессов. Физический закон – границы применимости. Физические теории и принцип соответствия. Роль и место физики в

формировании современной научной картины мира, в практической деятельности людей.

Механика

Границы применимости классической механики. Важнейшие кинематические

характеристики – перемещение, скорость, ускорение. Основные модели тел и движений.

Взаимодействие тел. Законы Всемирного тяготения, Гука, сухого трения. Инерциальная система отсчета. Законы механики Ньютона.

Импульс материальной точки и системы. Изменение и сохранение импульса.

Механическая энергия системы тел. Закон сохранения механической энергии. Работа силы.

Равновесие материальной точки и твердого тела. Условия равновесия. Момент силы. Равновесие жидкости и газа. Движение жидкостей и газов.

Механические колебания и волны. Превращения энергии при колебаниях. Энергия волны.

Молекулярная физика и термодинамика

Молекулярно-кинетическая теория (МКТ) строения вещества и ее экспериментальные доказательства. Абсолютная температура как мера средней кинетической энергии теплового движения частиц вещества. Модель идеального газа. Давление газа. Уравнение состояния идеального газа. Уравнение Менделеева—Клапейрона. Агрегатные состояния вещества.

Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии. Первый закон термодинамики. Необратимость тепловых процессов. Принципы действия тепловых машин.

Электродинамика

Электрическое поле. Закон Кулона. Напряженность и потенциал электростатического поля. Проводники, полупроводники и диэлектрики. Конденсатор.

Постоянный электрический ток. Электродвижущая сила. Закон Ома для полной цепи. Электрический ток в проводниках, электролитах, полупроводниках, газах и вакууме.

Сверхпроводимость.

Индукция магнитного поля. Действие магнитного поля на проводник с током и движущуюся заряженную частицу. Сила Ампера и сила Лоренца. Магнитные свойства вещества.

Закон электромагнитной индукции. Электромагнитное поле. Переменный ток. Явление самоиндукции. Индуктивность. Энергия электромагнитного поля.

Электромагнитные колебания. Колебательный контур.

Электромагнитные волны. Диапазоны электромагнитных излучений и их практическое применение.

Геометрическая оптика. Волновые свойства света.

Основы специальной теории относительности

Инвариантность модуля скорости света в вакууме. Принцип относительности Эйнштейна. Связь массы и энергии свободной частицы. Энергия покоя.

Квантовая физика. Физика атома и атомного ядра

Гипотеза М. Планка. Фотоэлектрический эффект. Фотон. Корпускулярно-волновой дуализм.

Планетарная модель атома. Объяснение линейчатого спектра водорода на основе квантовых постулатов Бора.

Состав и строение атомного ядра. Энергия связи атомных ядер. Виды радиоактивных превращений атомных ядер.

Закон радиоактивного распада. Ядерные реакции. Цепная реакция деления ядер.

Элементарные частицы. Фундаментальные взаимодействия.

Строение Вселенной

Современные представления о происхождении и эволюции Солнца и звезд. Классификация звезд. Звезды и источники их энергии.

Галактика. Представление о строении и эволюции Вселенной.

Примерный перечень практических и лабораторных работ (на выбор учителя)

Прямые измерения:

- измерение мгновенной скорости с использованием секундомера или компьютера с датчиками;
- сравнение масс (по взаимодействию);
- измерение сил в механике;
- измерение температуры жидкостными и цифровыми термометрами;
- оценка сил взаимодействия молекул (методом отрыва капель);
- измерение термодинамических параметров газа;
- измерение ЭДС источника тока;
- измерение силы взаимодействия катушки с током и магнита помощью электронных весов;
- определение периода обращения двойных звезд (печатные материалы).

Косвенные измерения:

- измерение ускорения;
- измерение ускорения свободного падения;
- определение энергии и импульса по тормозному пути;
- измерение удельной теплоты плавления льда;

- измерение напряженности вихревого электрического поля (при наблюдении электромагнитной индукции);
- измерение внутреннего сопротивления источника тока;
- определение показателя преломления среды;
- измерение фокусного расстояния собирающей и рассеивающей линз;
- определение длины световой волны;
- определение импульса и энергии частицы при движении в магнитном поле (по фотографиям).

4. Тематическое планирование с указанием количества часов, отводимых на освоение каждой темы

10 класс (2 часа в неделю, всего-68 часов)

Тема раздела	Количество
	часов
Введение.	1
Раздел 1. Механика	27
Тема 1. Кинематика	6
Тема 2. Динамика	9
Тема 3. Законы сохранения	7
Тема 4. Статика. Основы гидромеханики.	5
Раздел 2. Молекулярная физика и термодинамика.	18
Тема 1. Основы МКТ.	10
Тема 2. Термодинамика.	8
Раздел 3. Электродинамика.	18
Тема 1. Электростатика.	6
Тема 2. Законы постоянного тока.	8
Тема 3. Электрический ток в различных средах.	4
Повторение.	4
Итого	68

11 класс (2 часа в неделю, всего-68 часов)

Тема раздела	Количество часов
Раздел 1. Основы электродинамики.	10
Тема 1. Магнитное поле.	5
Тема 2. Электромагнитная индукция.	5
Раздел 2. Колебания и волны.	16
Тема 1. Механические колебания.	3
Тема 2. Электромагнитные колебания.	6
Тема 3. Механические волны.	3
Тема 4. Электромагнитные волны.	4
Раздел 3. Оптика.	13
Тема 1. Световые волны. Геометрическая и волновая оптика.	11
Тема 2. Излучения и спектры.	2
Раздел 4. Основы специальной теории относительности.	3
Раздел 5. Квантовая физика.	20
Тема 1. Световые кванты.	6
Тема 2. Атомная физика.	4

Тема 3. Физика атомного ядра.	8
Тема 4. Элементарные частицы.	2
Повторение.	6
Итого	68

Учебники:

Физика: 10 класс: учебник для учащихся общеобразовательных организаций / Г.Я Мякишев, Б.Б. Буховцев, Н.Н. Соцкий – М: Просвещение 2016г., рекомендованный Министерством образования и науки Российской Федерации.

Физика: 11 класс: учебник для учащихся общеобразовательных организаций / Г.Я Мякишев, Б.Б. Буховцев, Н.Н. Соцкий – М: Просвещение 2016г., рекомендованный Министерством образования и науки Российской Федерации